A Conserved Gene Structure and Expression Regulation of miR-433 and miR-127 in Mammals
نویسندگان
چکیده
MicroRNAs play essential roles in many cellular processes. However, limited information is available regarding the gene structure and transcriptional regulation of miRNAs. We explored the gene cluster encoding miR-433/127 in mammalian species using bioinformatics and in vitro "gene" expression approaches. Multiple sequence alignments (MSA) showed that the precursors of miR-433 and of miR-127 exhibited 95% and 100% similarity, respectively, in human, chimpanzee, horse, dog, monkey, rat, cow, and mouse. MSA of the promoter sequences of miR-433 and of miR-127 revealed lower sequence similarity among these mammalian species. However, the distance between miR-433 and miR-127 was strikingly similar, which was between 986 and 1007 bp and the position of transcription factor (TF) binding motifs, including estrogen related receptor response element (ERRE), was well conserved. Transient transfection assays showed that promoters of miR-433 and of miR-127 from human, rat, and dog were activated by estrogen related receptor gamma (ERRgamma) and inhibited by small heterodimer partner (SHP). ChIP assays confirmed the physical association of ERRgamma with the endogenous promoters of miR-433 and miR-127. In vitro over-expression of the human, rat, or dog miR-433/127 loci in cells, using an expression vector containing miR-433/127 and their promoter regions, markedly induced a differential expression of both primary and mature miR-433 and miR-127, indicating that miR-433 and miR-127 were possessed from their independent promoters. Our studies for the first time demonstrate a conserved gene structure and transcriptional regulation of miR-433 and miR-127 in mammals. The data suggest that the miR-433/127 loci may have evolved from a common gene of origin.
منابع مشابه
Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRγ
MicroRNAs (miRNAs, miRs) are genomically encoded small approximately 22 nt RNA molecules that have been shown to mediate translational repression of target mRNAs involved in cellular proliferation, differentiation and death. Despite intensive studies on their physiological and pathological functions, the molecular mechanism of how miRNA gene transcription is regulated remains largely unknown. M...
متن کاملThe Tumor Suppressor Roles of miR-433 and miR-127 in Gastric Cancer
The discovery of microRNAs (miRNAs) provides a new and powerful tool for studying the mechanism, diagnosis and treatment of human cancers. Currently, the methylation epigenetic silencing of miRNAs with tumor suppressor features by CpG island hypermethylation is emerging as a common hallmark of different tumors. Here we showed that miR-433 and miR-127 were significantly down-regulated in gastric...
متن کاملMiR-433 and miR-127 Arise from Independent Overlapping Primary Transcripts Encoded by the miR-433-127 Locus
MicroRNAs play significant roles in development, metabolism and carcinogenesis, however, limited information is available about their primary transcripts and the transcriptional regulation of the microRNA genes. We report here the cloning of two primary miRNAs (pri-miR-433 and pri-miR-127) encoded by the miR-433-127 locus. Using both database mining and experimental methods, we isolated the ful...
متن کاملP-71: Construction of Required DNA Plasmids for Validation of Predicted MicroR-NA Targets
Background: The micro-ribonucleic acids (miRNAs) are noncoding RNA molecules that are conserved developmentally and include usually 18-25 nucleotides. MiRNA regulates gene expression through mRNA degradation or inhibiting of its translation. These biomolecules contribute in cellular physiologic and pathologic processes and most of them may act as oncogenes or tumor inhibitors. Identification of...
متن کاملChanges in miR-122 Gene Expression in Liver Tissue and Serum Levels of ALT and AST Following Resistance Training and Boldenone Injection in Male Rats
Background and purpose: MicroRNA-122 (miR-122) is the most abundant liver–specific miRNA. It has been reported that miR-122 plays several biological roles such as iron homeostasis, tumor suppressor, hepatic fatty acid regulation, and in hepatocyte differentiation. The Purpose of this study was to investigate changes in liver miR-122 gene expression and serum levels of alanine aminotransferase (...
متن کامل